龙杰,博士,副研究员,现为3200威尼斯vip食品组分与物性中心成员,主要从事利用酶工程技术提高酶的耐热性、酶法高效制备功能性低聚糖及其活性研究、碳水化合物资源开发与利用等方面的研究。
主持和参与国家自然科学基金、十三五国家重点研发计划、江苏省自然科学基金、中国博士后基金等多项课题,近五年来以第一作者身份在Journal of Agricultural and Food Chemistry,Carbohydrate Polymers, Food Chemistry等刊物上发表SCI论文10余篇,申请发明专利10余项。
教育背景
2017.08~2018.08,美国普渡大学,访问学者
2016.01~2018.01,3200威尼斯vip,食品科学与工程,博士后
2012.08~2016.01,3200威尼斯vip,食品科学与工程,博士
2009.09~2011.12,南京农业大学,食品科学,硕士
2005.09~2009.07,南京农业大学,生物工程,学士
工作经历
2018.03-至今,3200威尼斯vip,3200威尼斯vip,副研究员
2018.03~2020.07,3200威尼斯vip,3200威尼斯vip,助理研究员
1.国家自然科学基金-面上项目:基于耐热性磁性纳米颗粒-β-琼胶酶定向固定化酶体系高效制备不同聚合度琼胶寡糖及其抑菌机理研究,32072164,2021/1-2024/12,主持
2.国家自然科学基金-青年基金:基于磁性纳米载体固定化提高普鲁兰酶耐热性的机理研究,31601413,2017/1-2019/12,主持
3.江苏省自然科学基金-青年基金:磁性壳聚糖纳米颗粒定向固定化提高普鲁兰酶耐热性的机理研究,BK20160168,2017/1-2019/12,主持
4.国家重点研发计划-子课题:基于高效吸附材料的物理吸附脱毒工艺研究2020YFC1606804,2020/12-2022/12,主持
5.中国博士后基金-面上项目:磁性纳米颗粒固定化β-呋喃果糖苷酶及其产物抑制研究,2019M651710,2019/7-2020/12,主持
6.中国博士后基金-面上项目:普鲁兰酶-磁性纳米颗粒固定化酶的构建及其耐热性探究,2016M600364,2017/1-2018/1,主持
7.江苏省博士后项目:基于生物素-亲和素-磁性纳米颗粒的定向固定化制备高耐热型普鲁兰酶及其耐热行为研究,1601145C,2016/6-2018/1,主持
代表性文章
[1].Long, J.; Li, X.; Wu, Z.; Xu, E.; Xu, X.; Jin, Z.; Jiao, A., Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2015, 472, 69-77.
[2].Long, J.; Wu, Z.; Li, X.; Xu, E.; Xu, X.; Jin, Z.; Jiao, A., New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4-kappa-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. Journal of Agricultural and Food Chemistry.2015,63, 3534-42.
[3].Long, J.; Yu, X.; Xu, E.; Wu, Z.; Xu, X.; Jin, Z.; Jiao, A., In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydrate Polymers, 2015,131, 98-107.
[4].Long, J.; Xu, E.; Li, X.; Wu, Z.; Wang, F.; Xu, X.; Jin, Z.; Jiao, A.; Zhan, X., Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-kappa-carrageenan nanoparticles. Food Chemistry.2016,202, 49-58.
[5].Long, J.; Li, X.; Zhan, X.; Xu, X.; Tian, Y.; Xie, Z.; Jin, Z., Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability. Bioprocess Biosystem Engineering, 2017, 40, 821-831.
[6].Long, J.; Zhang, B.; Li, X.; Zhan, X.; Xu, X.; Xie, Z.; Jin, Z., Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles. Food Chemistry, 2018, 239, 276-286.
[7].Long, J.; Wang, F.; Jiao, A.; Xu, X.; Xie, Z.; Jin, Z., Preparation, characterization and physicochemical properties of novel low-phosphorus egg yolk protein. Journal of the Science of Food and Agriculture,2019,99, 1740-1747.
[8].Long, J.; Pan, T.; Xie, Z.; Xu, X.; Jin, Z., Effective production of lactosucrose using β‐fructofuranosidase and glucose oxidase co‐immobilized by sol-gel encapsulation. Food Science & Nutrition, 2019, 00:1–15.
[9].Long, J.; Pan, T.; Xie, Z.; Xu, X.; Jin, Z., Co-immobilization of beta-fructofuranosidase and glucose oxidase improves the stability of Bi-enzymes and the production of lactosucrose. LWT-Food Science and Technology, 2020, 128, 109460.
[10].Long,J.; Li, X.; Liu, X.; Jin, Z., Xie, Z.; Xu, X.; Lu, C., Preparation of Streptavidin-Coated Magnetic Nanoparticles for Specific Immobilization of Enzymes with High Activity and Enhanced Stability. Industrial & Engineering Chemistry Research,2021, 60, 4, 1542–1552.